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In this contribution nuclear representations of the Dirac ring, developed over many
years, are shown to be a particular case of a theorem in algebraic geometry which at the
same time associates them with a Hodge decomposition of a Kaehler manifold. This
yields a shape that in some cases is independent of any appeal to a symmetry group.
However, because the nuclear representations are in the infinitesimal ring ofSO(4) and
the internal space of each representation is in a Kaehler (even Calabi-Yau) manifold
K ; the groupSO(10)=SO(4)× K can give additional information. This paper develops
the very fruitful symbiosis between algebra and irreducible representations ofSO(10)
and covers some aspects of string theory.

KEY WORDS: Calabi-Yau manifolds; strong fields; Hodge theory; nuclear algebraic
surfaces; IR’s ofSO(10).

1. INTRODUCTION

Long ago Eddington and Dirac asociated nucleons and electrons with repre-
sentations of the centralizer D of the quaternion or Dirac ring. Algebraists have
also shown that these representations lie in a Kaehler manifold with a Hodge de-
composition which is associated with an abelian variety (or polynomial) that yields
a shape (see for example, Griffiths, 1969; Moonen and Zarhin, 1999). Following
Eddington’s lead the Author (de Wet, 1998) has been able to find an irreducible
representation of D with the operators of spin, isospin, and parity carried by a
nucleon, and therefore to incorporate the many-nucleon case by constructing the
tensor product. Odd A nuclei have an internal Kaehler (even Calabi-Yau) manifold
and as expected exhibit not only mirror symmetry but decompose beautifully into
Hodge classes from which nuclear shapes may be determined.

Although algebraists prefer not to work with matrix representations much may
be gained from this approach. One thinks of Pauli matrices forSU2 and representa-
tions of quaternions, given for example by Eddington (1953), which were employed
by de Wet (1973, 1998) to find the well-known angular momentum operators for a
coupled system ofP protons andN neutrons which together with conjugate parity
operatorsπ in (2.4) below constitute the six generators ofO(4). However, these
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relations also follow from theZ2-grading of the algebra as shown by Lawson and
Michelsohn (1989), so there is an intimate connection between nuclear algebraic
geometry andSO(10), because the spinorial representations of D inO(4) lie in a
Calabi-Yau spaceK . In this contribution the symbiosis will be used to analyse nu-
clear structure. For example, Fig. 1 shows strings of electric flux lines binding the
rotating and spinning nucleons of9Be and9Li. These are equivalent to geodesics
on the nuclear manifolds computed by the matrix representations introduced in
Section 2. In contrast Fig. 2 is an idealized quintic hypersurface (or 2-brane) in 4-
space which also carries a string (1-brane) on9Li and does not depend on a matrix
representation. A four-dimensional view of this three-dimensional section appears
in Greene (1999) while Fig. 2 is taken from a program written by Hanson (1994).

Unfortunately there is not a unique relationship between algebraic varieties,
or hypersurfaces, and the associated Hodge decomposition, because a hypersurface
is generated by the poles, or singularities at the origin which are absent in the case
of the stable nuclei9Be, 11C, 13C (and their mirror partners) investigated so far
by the methods of Section 2 (where a Kaehler metric will be found). This metric
is twisted in the case of the unstable nucleus9Li and has a pole of Order 5 at
the origin (see Fig. 4) which following Griffiths (1969) will generate a quintic
in a four-dimensional complex projective space. The twisted 2-branes meeting in
a black hole at the origin of Fig. 2 could be the source of elementary particles
according to Greeneet al. (1995).

The contact with nuclear theory is provided by the labeling of a partition
A = λ1+ λ2+ λ3+ λ4 of a nuclear canonical ensemble that yields the states:

λ1= number of neutrons with positive spin and negative parity,
λ2= number of neutrons with negative spin and positive parity,
λ3= number of protons with negative spin and negative parity,
λ4= number of protons with positive spin and positive parity.

In this way a row of an irreducible representation is labeled by [λ] ≡ [λ1λ2λ3λ4].
The spin and parity are respectively

s= 1

2
(A− 2(λ2+ λ3)), p = 1

2
(2(λ2+ λ4)− A) (1.1)

and it is possible to find the eigenvalues and hence wave functions and metric
of a Hodge decomposition of an irreducible three-formC[λ] , in the centralizer
D, by direct substitution into (2.7a) with the identificationsσo = 2is, πo = 2ip.
The fact that these eigenvalues agree precisely, up to sign, with those of a matrix
representation justifies the canonical labeling. However, to find the signs of the
states labeling the rows ofC[λ] an irreducible matrix representation of a subspace
µ is mandatory.

A representation of D has, by construction, a spin structure, and therefore
according to Lawson and Michelsohn (1989) has zero first Chern class. Thus the
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Fig. 1. Geodesics or strings on9Be,9Li.
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Fig. 2. Hanson quintic hypersurface.

internal Kaehler space is also a Calabi-Yau spaceK and it is possible to find a
decompositionM4× K of 10-dimensional space-time for each odd-A nucleus.
One may say that the spinorial representations ofSO(10) describe the particles
governed by representations ofSO(4) that lie in K . A resume’ of the nuclear
representations ofSO(4) follows in the next section.

2. NUCLEAR REPRESENTATIONS OF O(4)

We begin with an irreducible self-representation

1

4
9 = (i E491+ E2392+ E1493+ E0594)e (2.1)
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of the centralizer D of the Dirac ring where Eddington’sE-numbers are related to
the Dirac matrices by

γν = i Eoν , Eµν = EρµEρν = −Eνµ, E2
µν = −1, µ < ν = 1, . . . , 5

and the commuting operatorsE23, E14, andE05 respectively are independent rota-
tions in 3-space, 4-space, and isospace that correspond to the spinσ , parityπ , and
chargeT3 carried by a single-nucleon. The parameters92,93,94 are half-angles
of rotation ande is a primitive idempotent;E4 is the unit matrix. To see howE14

is related to parity we notice that a rotation throughπ aboutt will send x to−x
without inverting time but instead changing to a left-handed coordinate system.
The operators of the centralizer obey the multiplication table:

E23 E14 E05

E23 i 2 iE05 iE14

E14 iE05 i 2 iE23

E05 iE14 iE23 i 2

(2.2)

A many-nucleon representation is found in the enveloping algebraA(γ ) of the
Dirac ring by constructing tensor products of (2.1) with itself. The basis elements
are the 4A× 4A matrices

El
µν = E4⊗ · · · ⊗ E4⊗ Eµν ⊗ E4⊗ · · · ⊗ E4 (2.2a)

with El
µν in the 1st position. The elementsEl

µν , E(l+1)
µν commute, andA(γ ) is found

to have the following generators, or de Broglie operators

0(A)
ν =

1

2

(
E1

0ν + E2
0ν + · · · + EA

oν

)
; ν = 1, . . . , 5 (2.3a)

σ (A)
µν =

[
0(A)
µ , 0(A)

ν

] = 1

2

(
E1
µν + · · · + EA

µν

)
; µ < ν = 1, . . . , 5 (2.3b)

η(A)
ν = E0ν ⊗ · · · ⊗ E0ν = E1

0νE2
0ν · · · EA

0ν ,
(2.3c)

η(A)
µν = η(A)

µ η(A)
ν = E1

µνE2
µν · · · EA

µν

Then by using the 4× 4 matrix representations ofE23, E14, andE05 one can find
fibers consisting of all those states that have the same quantum numbers of spin,
parity, and charge. The fiber bundle space has a beautiful de Rham decomposition
into isobaric multiplets each of which is characterized by the matrix representations

σi = EN ⊗ P0i + N0i ⊗ EP, πi = EN ⊗ P0i − N0i ⊗ EP, i = 1, 2, 3
(2.4)

whereP0i , N0i are (P + 1)-, (N + 1)-dimensional Lie operators ofSO(3) and
EP, EN are (P + 1)-, (N + 1)-dimensional unit matrices (cf. de Wet, 1973). The
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operatorσi may be recognized as the well-known angular momentum matrix for
a coupled system ofP protons andN neutrons andπi is a parity operator.

In factσi , πi are the generators ofSO(4) and the fibration introduces a Yang-
Mills field with connections on a fiber bundle (cf. for example, Schwarz, 1991,
Introduction).

The irreducible representations or minimal left ideals ofA(γ ) are

9 (A) =
∑
λ

C[λ] P[λ] (2.5)

whereP[λ] is a projection operator

P[λ] = i−A
(
i Aψ

λ1
1 ψ

λ2
2 ψ

λ3
3 ψ

λ4
4 + η(A)

23 ψ
λ2
1 ψ

λ1
2 ψ

λ4
3 ψ

λ3
4

)
εA

+ i−A
(
η

(A)
14 ψ

λ3
1 ψ

λ4
2 ψ

λ1
3 ψ

λ2
4 + η(A)

5 ψ
λ4
1 ψ

λ3
2 ψ

λ2
3 ψ

λ1
4

)
εA (2.6a)

satisfying

P2
[λ] = P[λ]ψ

λ1
1 ψ

λ2
2 ψ

λ3
3 ψ

λ4
4 (2.6b)

whereεA = e⊗ · · · ⊗ e is idempotent so that (2.6b) has the form (2.1) in config-
uration space. Examination of (2.6a) shows that, in view of the canonical labeling
scheme, the first two terms characterize a given nucleus while the other pair char-
acterize its mirror (T →−T). Furthermore, if [λ1λ2λ3λ4] is characterized byσ0,
π0 its partner [λ2λ1λ4λ3] will be characterized by−σ0,−π0 so as will be confirmed
C[λ1λ2λ3λ4] = −C[λ2λ1λ4λ3] are both acceptable. In this way there is a sign ambigu-
ity that can be settled only by comparison with the eigenvalues of an irreducible
subspaceµ of C[λ] .

Now by virtue of the isomorphism between Clifford multiplication and the
exterior product (Lawson and Michelsohn, 1989)

C[λ] = i λ1
∑(

E1
23 · · · Eλ2

23Eλ2+1
14 · · · Eλ2+λ3

14 Eλ2+λ3+1
05 · · · EA−1

05

)
(2.7)

is a threeform in the centralizer D. Here there is summation of all theN[λ] =
A!/(λ1!λ2!λ3!λ4!) combinations of the basis elements and by (2.5) a matrix repre-
sentation of the many nucleon problem will have the rows ofC[λ] labelled by the
states [λ]. However, a Hodge decomposition of the central equation (2.7) may be
obtained without any appeal to matrices and also the eigenvalues that determine
the metric may be found up to sign from (1.1). The fact that signs can be chosen
to agree exactly with a matrix representation based on (2.4) for the light nuclei
up to 11C justifies the canonical labeling adopted. In the case of13C there is a
tiny spin mutation of 1/450 in two paired states which suggests a reformulation
of the Lie commutation relations for these states as employed in quantum group
theory. Santilli (1992) called these algebras Lie-Admissible. They indicateSO(10)
symmetry breaking.
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To find the Hodge decomposition of (2.7) we write it

C[3] = i31σ32
o π33

o T34
o −

∑
λ

i λ1σλ2
o π

λ3
o Tλ4

o (2.7a)

where [3] = [31323334] is the ground state and

σo = 2σ1 =
(
E1

23+ · · · + EA
23

) = 2is, πo = 2π1 =
(
E1

14+ · · · + EA
14

) = 2ip

To = 20(A)
5 =

(
E1

05+ · · · + EA
05

) = i (Z − N) = 2T3 (2.8)

The summation contains all those terms arising from repeated indices, e.g.,Ek
23Ek

23,
Ek

23Ek
14, Ek

23Ek
05, andEk

14Ek
05 that yield a single term according to (2.2) and (2.2a).

An elementary application of (2.7a) is

σoTo = P
(
E j

23Ei
05

)+ iπo (2.9a)

whereP signifies summation over theA!/(A− n)! permutations of then genera-
tors in the bracket. Then

C[( A−2)101]= i (A−2)P
(
Ei

23E j
23

) = i (A−2)(σoTo − iπo) (2.9b)

and if A = 3, Z = 1, To = i (Z − N) = −i

C[1101] = (σo + πo) (2.9c)

which characterizes the ground state of3H. The ground state of3He is obtained
by interchangingσo⇔πo in (2.9b) to get

C[( A−2)011]= i (A−2)(σoTo − iσo)

so that ifA = 3, Z = 2, To = i , we find the mirror nucleus

C[1101] = (σo − πo) (2.9d)

which is manifestlyCP-invariant becauseTo→−To is accompanied byπ→−πo.
From (2.4) we find the dual complex spaces

σo =
X

−XT
, πo =

XT

−X
, X =

−1 −√2 o√
2 1 −√2

o
√

2 −1

(2.10)

which lie in a Kaehler manifold known to have a Hodge decomposition (cf. for ex-
ample, Griffiths and Harris, 1978). Thus following Kobayashi and Nomizu (1969,
Ch. 9) we setπ0 equal to the subspace31,0 of (1,0) forms,σo equal to the subspace
30,1, thenC[1101] is the Hodge decompositionH1,0+ H0,1.

The eigenvalues of (σo + πo) found from the labeling (1.1) are [−2i ; 2i ;−2i ;
2i ;−2i ; 2i ] corresponding to the states

([0210]; [2001]; [2010]; [0201]; [1110]; [1101])
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These are in one-to-one correspondence with the matrix representation (2.10) but
the latter specifies the sets

(2i ;−2i ; 2i ), −(2i ;−2i ; 2i )

In general we will find a decomposition into (p, q) forms whenever the threeform
σoπoTo contains terms with the same indices (as shown by (2.9a) whereπo arises
from all the productsEi

23Ei
14). There will be coupling constants that count the

number of times an irreducible representation occurs. The process beginning with
(2.9) may be continued by “adding” one nucleon at a time, i.e., by multiplying
by σo, πo, To until 32+33+34 = A−31 and in this way we find theA = 9
operators

9Li: C[3303] =
i 3P

(
Ei

23E j
23Ek

23El
05Em

05En
05

)
(3!3!)

= 1

6

[
34(σ0+ π0)+ 9

(
σ0π

2
0 + σ 2

0π0
)+ (σ 3

0 + π3
0

)]
(2.11a)

9C:C[3033] = 1

6

[
34(σ0− π0)+ 9

(
σπ2

0 − σ 2
0π0

)+ (σ0− π3
0

)]
(2.11b)

9B: C[3123] = −1

2

[
34(σ0+ π0)+ (σ0π

2
0 + σ 2

0π0
)+ (σ 3

0 + π3
0

)]
(2.12a)

9Be:C[3213] = −1

2

[
34(σ0− π0)+ (σ0π

2
0 − σ 2

0π0
)+ (σ 3

0 − π3
0

)]
(2.12b)

which areCP-invariant and may be expressed in the matrix form (2.10) by means
of (2.4). The representations of mirror nuclei are identical up to an equivalence
transformation of rows and columns.

Equations (2.11) and (2.12) are in terms of the harmonics

H1,0+ H0,1 = (σ0+ π0); H2,1+ H1,2= (σ 2
0π0+ σ0π

2
0

)
;

H3,0+ H0,3 = (σ 3
0 + π3

0

)
(2.13)

which is a Hodge decomposition of the cohomology of the Kaehler manifold con-
sisting of classes that are closed but not exact as confirmed by Kobayashi and
Nomizu who show that the exterior derivative of an odd form is even. Thus the
observation that (2.11) and (2.12) contain no even forms proves that all classes
are closed. Apart from the contribution of Griffiths (1969); Greenet al. (1988,
Section 16.3.2) show that the harmonics (2.13) may characterize a quintic hyper-
surface illustrated by Fig. 2, although this need not always be the case as will
become clear when a metric is introduced.

We will need to exponentiate an irreducible subspaceµ of the matrix re-
presentation ofC[3] . It has the structure (2.10) whereX is now a real symmetric
p× p matrix A with coordinatesk = γkt and there is a one-to-one correspondence
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between the eigenvaluesγk and the state [λ]k = [λ1λ2λ3λ4]k. The exponential
formula (de Wet, 1996) states that

eµt = µ
n∑

k=0,1

Fk(µ) cosγkt

i γk F(i γk)
+ i

n∑
k=1,2

Fk(µ) sinγkt

Fk(i γk)
(2.14)

where

F(µ) = µ(µ2+ 1)
(
µ2+ γ 2

2

) · · · (µ+ γ 2
n

) = 0

F0(µ) = F(µ)/µ, Fk(µ) = F(µ)/
(
µ2+ γ 2

k

)
, Fj (µ)Fk(µ) = 0 (2.14a)

and

Kk(µ) = i γk Fk(µ)

µFk(i γk)
(2.15)

is idempotent. Thus (2.14) follows by differentiating att = 0 because
∑

k Kk(µ)
is a decomposition of unity. Alsoeµt is orthogonal and unimodular because

eµt (eµt )T = e(µ+µT)t = 1= eTrµt = Det eµt (2.16)

In this way (2.14) is an irreducible representation ofSO(4) that generates an internal
nuclear space that is Calabi-Yau. A metric, intimately associated with the wave
function, is found by writing (2.14)

eµt = Z0(cost)+ Z1(sint) = Z0 Z1

Z1 Z0

and using the formula of Wong (1967)

ds2 = Tr
dT

(1+ TT̄T)

dT̄T

(1+ TT̄T)
(2.17)

where

T = Z1Z−1
0 = −TT = µ

n∑
k=1,2

i (Fµ(µ)/µ) tanγkt

Fµ(iλk)
(2.17a)

TT̄t =
n∑

k=1,2

Kk(µ) tan2 γkt (2.17b)

HereT̄T anddT̄T are conjugate transposes ofT anddT and (2.17) reduces to the
flat measure carried by a torus, namely

ds2 =
n∑

k=1,2

dzk dz̄k, zk = i γkt (2.18)



P1: GYQ

International Journal of Theoretical Physics [ijtp] PP597-379786-05 September 2, 2002 17:2 Style file version May 30th, 2002

1534 de Wet

which is the Kaehler condition that the metric approximate the Euclidean metric
to Order 2 at each point (Griffiths and Harris, 1978, Ch. 0.7).

However, (2.14a) depends on a translation to a normal canonical form

(1;γ2; . . . ; γn), n6 p (2.19)

where (γ2, . . . , γn) are all positive. If this condition is not met we must add an
angular momentumγ0 equal to the greatest negativeγ and then divide byγ f =
(γk + γ0), which may be absorbed int and does not change the geodesics although
there is a frequency change in the wave functionseµt . The effect of the translation
is to introduce a “twist”eµt ei γ0t that multiplies (2.17a) by tan2 γ0t and leads to a
distorted metric

ds2 =
∑

k

g(γk)g(−γkt) d(γt t) d(−γkt)

=
∑

k

tan2 γ0t sec4 γkt

(1+ tan2 γ0t tan2 γkt)2
dzk dz̄k =

∑
k

gkk̄ dzk d̄zk (2.20)

which is independent ofµ because of the idempotent factor (2.15) and reduces to
(2.18) when tanγ0t = 1. Herek = γkt , k̄ = −γkt are respectively coordinates of
X→ A,−XT →−A in (2.10), whilei γkt are the coordinates ofµ.

Finally because by (2.14a), ak-plane is annihilated byγk, its orientation is
determined by the remaining planes. In this way a spinor field corresponding to
the state [λ]k and propagated only around the sectionkk̄ will return to its original
value that is precisely the condition given by Greenet al. (1988, Section 15.1.3)
for a Calabi-Yau space to haveSU(3) holonomy.

3. NUCLEAR SHAPES

In this section we will use (2.14) to determine the nuclear shapes of Fig. 1
by finding the geodesics (or strings according to Greenet al., 1988, Ch. 1) on the
manifolds of Li-9, Be-9, and their mirror partners. In the case of Be-9

µ =

k̄k

k

k̄

A

−A
(3.1)

where the real bisymmetric matrixA, with normalized eigenvalues

(0; 1/2; 1; 5/2; 5) (3.2)
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has been obtained by interchanging rows and columns. There is no twist so the
metric (2.18) is flat. Preferred central states are chosen with elements

A43 = −3

4
, A44 = 9

4
. (3.3)

After evaluating [Am]43, [Am]44 for m= 3, 5, 7, Equation (2.14) yielded the wave
functions

X3 = 1/16(−sint/2+ sint + 5 sin 5t/2− 5 sin 5t) (3.4a)

X4 = X3(2π − t) = 1/16(−sint/2− sint + 5 sin 5t/2+ 5 sin 5t) (3.4b)

and it may readily be confirmed that att = 0, dX/dt = −3/4, dX/dt = 9/4 in
agreement with (3.3). BecauseX4 = X3(2π − t) the wave functions are comple-
mentary and consequently generate closed geodesics in 3-space (cf. Kobayashi
and Nomizu, 1969, Ch. 9). They may be thought of as electric flux lines enclosing
the rotating and spinning nucleons as depicted in Fig. 1 (cf. t’Hooft, 1979). How-
ever, because the nucleus is pulsating and rotating, nucleons sketched in the figure
will move as the geodesic proceeds round them so only average positions can be
shown.

Although the complementary wave functions are not given, Fig. 3 shows the
geodesics on13C (to the same scale). There are two nucleons outside of a central
core and the axis of rotation is perpendicular to the figure. There is also a twisted
metric but no singularities at the origin.9Be and13C are dipoles.

Turning now to9Li, the central matrix elements of preferred states are

A44 = 31

12
, A45 = −1 (3.5)

Fig. 3. Geodesics on C-13.
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and the normalized eigenvalues ofA are(
0;

1

2
;

5

6
; 1;

4

3
;

3

2
;

5

2
; 5

)
(3.6)

with a twist ofγ0 = 5/3. After evaluating [Am]44, [Am]45, for m= 3, 5, 7,. . . , 13,
Equation (2.14) yielded the complementary wave functions

X4 = 1

64
sin

5t

3

(
9 sin

t

2
+ 5 sin

5t

6
+ 3

2
sint + 1

2
sin

4

3
t + 3 sin

3

2
t

+ 15 sin
5

2
t + 22.5 sin 5t

)
(3.7a)

X5 = +X4(6π − t) = 1

64
sin

5

3
t

(
9 sin

t

2
+ 5 sin

5t

6
− 3

2
sint

−1

2
sin

4

3
t + 3 sin

3

2
t + 15 sin

5

2
t − 22.5 sin 5t

)
(3.7b)

which are also plotted to approximately the same scale in Fig. 1. Again att = 0,
dX4/dt, dX5/dt satisfy (3.5).

The Lithium nucleus rotates into itself aftert = 6π , and Fig. 4 shows the
twisted measure (derived from (2.20)) namely

gκκ̄ = tan2(5/3)t sec4(5/6)t

(1+ tan2(5/3)t tan2(5/6)t)2
(3.8)

on the preferred planeγk = γ0/2= 5/6 over this range. The troughs correspond to
the small metric of Fig. 2, as derived in the Appendix, and apart from oscillations
to the flat metricgkk̄ = 1, corresponding to tan53t = 1, there are five singularities
at the origin which occur when sinγ0t = tanγ0t = 0, i.e., whent = 3π

5 , 9π
5 , 3π ,

21π
5 , 27π

5 < 6π . These define a pole of order 5, that may be reduced to a minimal

Fig. 4. Nuclear metrics.
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Fig. 5. Hanson metric.

ordern(q) = 4, which Griffiths (1969, Table 1) demonstrates can generate at least
a quintic algebraic varietyV in the complex projective spaceP4. Moreover, the
Hodge decomposition must be associated with a three-formH3.

Because of the absence of singularities in the Hanson metric (shown in Fig. 5)
Fig. 2 can only be regarded as a first approximation to the manifold of9Li. In fact
there are 101 possible quintic hypersurfaces and one must seek that one with
the metric (3.8). The hypersurface considered in the Appendix is described by
two parametersξ , t . Thus to find that part defining a geodesic, or one-parameter
subgroup, we setξ = 0, n = 5 to get Fig. 5. The metric is tiny.

APPENDIX

Hanson (1994) looked at a three-dimensional section

zn
1 + zn

2 = 1 (A1)

of the abelian variety

zn
1 + zn

2 + zn
3 + zn

4 = 1

in complex projective 4-spaceP. A two-dimensional solution of (A1) is

z1(t, ξ, k1) = s(k1, n)u1(t, ξ )2/n

z2(t, ξ, k2) = s(k2, n)u2(t, ξ )2/n

where

u1(t, ξ ) = 1

2
(exp(ξ + it)+ exp(−ξ − it))

u2(t, ξ ) = 1

2i
(exp(ξ + it)− exp(−ξ − it)), (A2)
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and

s(k, n) = exp(2π ik/n)

is a phase factor consisting of thenth root of unity for the integers 0≤ k ≤ (n− 1).
Then

dz1 = s(k1, n)

(
2

n
u

2
n−1
1

)(
∂u1

∂t
dt+ ∂u1

∂ξ
dξ

)
= s(k1, n)

2

n
u

2
n−1
1 u2(−dt+ idξ )

dz1 dz̄1 = 4

n2
(u1ū1)

2
n−1u2ū2(dt2+ dξ2)

dz2 = s(k2, n)
2

n
u

2
n−1
2 u1(dt− idξ )

dz2 dz̄2 = 4

n2
(u2ū2)

2
n−1u1ū1(dt2+ dξ2)

and the Fubini-study metric given by Kobayashi and Nomizu (1969, Ch. 9) reads

ds2 = dz1 dz̄1+ dz2 dz̄2− (z1 dz2− z2 dz1)(z̄1 dz̄2− z̄2 dz̄1)

(1+ z1z̄1+ z2z̄2)2

= 4((u1ū1)2− 2
n + (u2ū2)2− 2

n − 1)(dt2+ dξ2)

n2[(u1ū1)(u2ū2)]1− 2
n
(
1+ (u1ū1)

2
n + (u2ū2)

2
n
)2

= G(dt2+ dξ2) (A3)

where from (A2)

(u1ū1) = 1

2
(cosh 2ξ + cos 2t), (u2ū2) = 1

2
(cosh 2ξ − cos 2t), u2

1+ u2
2 = 1

Equation (A3) is plotted in Fig. 5 withξ = 0, andn = 5.
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